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The paper presents a theoretical and experimental study of natural convection in a 
horizontal cavity which communicates laterally with a large reservoir. The cavity 
walls and the reservoir are at different temperatures. It is shown theoretically that 
the flow consists of a horizontal counterflow which penetrates the cavity over a distinct 
length. The penetration length is shown to be proportional to the cavity height and 
to the square root of the Rayleigh number based on cavity height and cavity-reservoir 
temperature difference. The validity of the theory is demonstrated on the basis of a 
flow visualization experiment. It is shown also that the Nusselt number for cavity- 
reservoir heat exchange is proportional to the square root of the Rayleigh number, 
and is relatively insensitive to the Prandtl number in the Pr range 0.7 to a. The 
energy-engineering applications of the lateral penetration flow are discussed. 

1. Introduction 
The objective of this paper is to report a fundamental study of the phenomenon of 

free convection penetration into a lateral (horizontal) cavity. The penetrative flow 
is driven by the temperature difference between the walls of the cavity and the fluid 
reservoir with which the cavity communicates. This flow has not been studied pre- 
viously, yet it has important practical applications in the field of energy engineering. 
Specifically, the phenomenon of lateral penetration is responsible for the enhancement 
of heat transfer between fluids and irregular vertical walls with cavities. The enhance- 
ment of fluid motion and thermal mixing is an important consideration< in the design 
of nuclear reactor core structures and superconducting magnets, as well as in the 
design of energy-efficient walls for buildings. The lateral penetration flow is also 
important in the heat transfer performance of strip finned vertical surfaces with the 
fins oriented horizontally. 

The fluid mechanics literature contains considerable information on a phenomenon 
related to lateral penetration by free convection, namely, the interaction of a fluid 
reservoir with a vertical cavity into a horizontal wall (the open thermosyphon problem). 
This body of research was motivated by the need to invent adequate cooling arrange- 
ments of highly-stressed rotor blades of high-temperature gas turbines. The theoretical 
work on the open thermosyphon problem waa pioneered by Lighthill (1953) who 
predicted, among a number of features, the laminar penetration length of cold reservoir 
fluid into a heated vertical tube with the bottom end closed. Lighthill’s predictions 
were later confirmed by experimental measurements reported by Martin & Cohen 
(1954), Martin (1965) and Hasegawa, Nishikawa & Yamagata (1963). In a related 
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FIGURE 1. Schematic diagram of two-dimensional cavity communicating laterally 

with a fluid reservoir. 

study, Martin (1959) determined experimentally the effect of tube inclination (de- 
parture from the vertical orientation) on the boundary-layer flow induced in the 
tube. The maximum angular departure considered in this experiment was 51-5 '. A 
comprehensive review of these and other advances in the area of free convection 
penetration into vertical cavities was written by Bayley & Martin (1971). This review 
shows that the horizontal cavity problem remains to be documented. 

In  what follows, we describe the first study of free convection penetration into a 
horizontal two-dimensional cavity. The paper has three parts. In the next section we 
develop the proper scaling and analytical formulation of the penetrative flow. Next, 
we report numerical results obtained based on the preceeding theory. Finally, in 5 4, 
we report experimental observations on the flow pattern which agree well with the 
theory. We conclude the paper with a discussion of the engineering importance of our 
results in the calculation of heat transfer rates from vertical walls with lateral cavities 
or with extended surfaces (fins). 

2. Theory 
Consider the two-dimensional lateral cavity of length L and height H shown in 

figure 1. The solid walls of the cavity are maintained at a temperature T,, while the 
fluid reservoir communicating with the cavity is maintained at a temperature T,. 

If the cavity wall is warmer than the reservoir (T, > T2), and if the fluid expands 
upon isobaric heating, the cavity fluid will become buoyant and rise into the adjacent 
reservoir. At the same time, cold fluid from the reservoir will creep into the cavity 
replacing the departing warm fluid. Hence, we expect a cavity flow which is, on the 
one hand, driven by the cavity-reservoir temperature difference and, on the other 
hand, retarded by wall friction. The friction effect will become more pronounced as 
the cavity slenderness increases ( H / L  --f 0) .  In  fact, we can imagine a lateral cavity 
slender enough so that its extremity (closed end) is filled with isothermal fluid forever 
unaffected by the natural circulation induced by the reservoir. In  such a cavity the 
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free convection exchange of fluid and heat is limited to a region near the mouth. One 
of the objectives of this investigation is to determine the distance to which reservoir 
fluid penetrates into the cavity. 

Mathematical formulation 

Let L, be the unknown length of the ‘entrance’ zone of interest. Relative to the 
Cartesian system of co-ordinates x*, y* shown in figure 1, the equations governing the 
conservation of mass, momentum and energy can be written m 

In these equations, u*, v*, T*, v, a, /3 are the x* and y ,  velocity components, tempera- 
ture, kinematic viscosity, thermal diffusivity and coefficient of thermal expansion, 
respectively. The fluid medium is regarded as Boussinesq-incompressible, in other 
words, the density variations are neglected everywhere except in the buoyancy term 
in the momentum equation (2). Function c*(x*,y,) appearing in the momentum 
equation is the vorticity function 

a2** a2+* 
* aY2,’ 

Q = =+- 
while $*(x*, y*) is the stream function defined as 

u*=  -- a$* w* 
ay*’ v*=- ax* ’ 

(4) 

The boundary conditions accounting for the horizontal walls of the cavity (y* = 0, H )  
are 

(7, 8, 9) 

Conditions at x* = 0 and at the mouth of the cavity (z* = 4) will account for the 
manner in which the cavity flow interacts with the rest of the cavity (x* < 0) and the 
reservoir fluid. Since the interactions at x* = 0, L, depend on the flow and temperature 
pattern in the 0 < x* < L, region, we postpone their discussion until $ 3  where a 
solution for the flow field is determined. 

Scaling 
In  the region of interest, 0 < x* < L,, the directional gradients a/ax,, a/ay,  are of 
order l-l, H-l ,  where 1 is the horizontal length scale of the flow pattern. In  the same 
region, temperature changes scale as the wall-reservoir temperature difference which 
drives the flow, AT = T1-T2, Assuming that the cavity flow pattern is slender, 
H < I ,  the balance of convection and diffusion in the energy equation (3), 

+*LIT aAT 
H1 H 2  ’ 

--- 
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suggests that the stream function $* is of order al /H.  The balance of viscous and 
buoyancy forces in the momentum equation (2) ,  

implies that $* is also of order /3gATH4/(vl). We conclude that 

a1 $gAT€P 
a= vl 

This is an important result which shows that the flow slenderness ratio Z/H scales 
~ 

up as the square root of the Rayleigh number based on H and AT, 

/3gHaAT 
av 

Ra = 

Therefore, the appropriate non-dimensional variables of the problem are 

Y* 

T-TI 

Y = a ,  x=- x* 
H Ra* ' 

@* e=- 
@ = d z g  TI-T,' 

The corresponding non-dimensional conservation statements are 

--- 

where Pr = v /u  is the Prandtl number. Note that the P/ax:  terms appearing in the 
original equations have been neglected, based on the slender pattern assumption 
(1 a). The corresponding boundary conditions along the horizontal walls are 

+ = - = e = O  a$ at y=O,l. 
aY 

Similarity pattern 

Visual inspection of equations (15), (16) and conditions (17) reveals that the problem 
admits a similarity solution in which the longitudinal velocity (hence $) is propor- 
tional to x, and the cavity fluid temperature is proportional to xa. Such a dependence 
on longitudinal position is physically plausible in view of the fact that at the deep end 
(x = 0) the fluid is motionless and isothermal. Substituting 

+ = x$(y), 8 = x27(y) 
into equations (15), (16) yields 

(2% (21) 
1 

Pr - ( - $'$" + $9") = 4"" + 27, - 2#'7 + $7' = 7", 

where the primes denote d l d y .  The boundary conditions (17) become 

# = # ' = r = O  at y=O,l. (22) 
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FIGURE 2. Stream-function profile aa a function of Prandtl number. 

It is interesting to note at  this point that the longitudinal dependence of the flow 
and temperature fields, equations (18), (19), is not the same as in the vertical pene- 
trative flow described by Lighthill (1953). In  a vertical tube with one end open, the 
longitudinal velocity and the temperature vary linearly with longitudinal position; 
the same 2-variation as in Lighthill's solution is exhibited by the similarity solution 
for natural convection in a vertical well filled with porous medium (Bejan 1980). 

3. Numerical results 
We solved equations (20), (21) numerically employing the shooting technique de- 

scribed in Carnahan, Luther & Wilks (1969). The numerical integration was based on 
the standard fourth-order RungeKutta method using 40 nodes equidistantly placed 
between y = 0 and y = 1. The integration was started from y = 0 ;  the initial values 
of q5", #" and 7' had to be adjusted successively until the y = 1 boundary conditions 
(22) were satisfied. 

The success of each integration was assessed by calculating the three shooting 
errors in 7 ,  # and 6' at y = 1 .  We found the 7y,l error to be most sensitive to the initial 
value selected for T;,,,. The remaining two errors, q5v=l and q5Lzl, were grouped into 
an aggregate function E = (q5v,1)8+(g5;=1)2 which is most sensitive to the values 
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FIGURE 3. Horizontal velocity profile as a function of Prandtl number. 

chosen for and #:EO. We minimized function E (i.e. we found the correct $iw0 
and q5:.=o), using the 'direct search method' proposed by Hooke & Jeeves (1961). We 
were also able to minimize the 7y,l erorr by varying r;,o and linearly interpolating 
between two consecutive erroneous guesses. The numerical solution presented below 
satisfies the following shooting success criterion 

where 0 represents functions r ,  q5 or q5', and Omax is the absolute maximum attained 
by the respective function between y = 0 and y = 1. 

Figures 2-4 show the numerical solution corresponding to three different Prandtl 
numbers, Pr = 0.7 (air at  1 atm, 100 "C), Pr = 7 (pure water at 20.5 "C) and Pr +- 00 

(light oil). Using this solution, in figure 5 we plotted a set of streamlines (+ = constant) 
and isotherms (0 = constant) for the limiting case Pr +- 00. 

The flow pattern consists of a horizontal counterflow increasing in intensity toward 
the mouth of the cavity. The streamline pattern is similar to Phillips' (1 966) salinity- 
driven intrusion flow along the surface of the Red Sea. In  the present case, cold fluid 
is drawn from the reservoir into the lower half of the cavity; next, the fluid warms up, 
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FIQURE 4. Temperature profile aa a function of Prandtl number. 
7 

rises into the upper half of the cavity, turns aound and escapes back into the reservoir. 
The level where the horizontal velocity changes sign (y = 0.48 for Pr -+ co) migrates 
upward as the Prandtl number decreases (see y corresponding to q5' = 0 in figure 3). 
The shift in the maximum of function #(y )  (figure 2) indicates that the total mass 
flow drawn into the cavity decreases as the Prandtl number decreases. 

The temperature profile 7 ( y )  (figure 4) demonstrates that, in an average sense, the 
fluid in the lower half of the cavity is colder than in the upper half. The temperature 
minimum is located at y = 0.349 (Pr --+ a); this minimum migrates upward as Pr 
decreases. The heating of the cavity fluid is most intense along the lower wall, where 
the inflow of cold fluid first comes in contact with the warm wall. The heating process 
is completed at  a slower rate aa the stream changes direction and sweeps the upper 
wall. The two wall temperature gradients and other features of the flow have been 
assembled in table 1. 

The pattern displayed in figures 2-5 is the result of solving equations of the boundary 
layer type, where the a2/ax2 diffusion terms have been neglected. This sohition cannot 
be expected to satisfy boundary conditions imposed on the vertical end-planes x = 0, 
x = LJZ, because in the end regions the slender-pattern approximation does not apply. 
However, we can still account for end conditions by specifying the maximum tem- 
perature difference working across the similarity pattern. This approach is known to 
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FIGURE 5. Streamlines and isotherms for the case Pr + m. 

Pr 7'(y = 0)  7'(y = 1) 7lnh Y ( 7 m h )  Loll C = Nu/Ra* 

0.7 
0 
00 

- 4483 1386 -1119.5 0.3711 0.02989 0.0522 
- 4984 1312 - 1162.9 0.3514 0.02932 0.0529 
- 5129 1321 - 1185.8 0-3488 0.02904 0.0527 

TABLE 1. 

work satisfactorily, as demonstrated by Lighthill (1953) in the analysis of free con- 
vection penetration into a vertical tube, and by Bejan (1980) in the study of a vertical 
well filled with a fluid-saturated porous medium. 

In the present solution, the temperature distribution satisfies already the condition 
8 = 0 at the warm end (x = 0). At the opposite end, the entering fluid is all at T, 
(reservoir temperature), hence, we can approximately set the lowest temperature of 
the similarity pattern equal to the reservoir temperature (0 = - 1) .  This approxima- 
tion is a fundamental feature of the present theory which, as discussed earlier, is 
based on solving equations of the parabolic type. Writing therefore 

we find an important parameter of the flow field, namely, the horizontal dimension 
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FIGURE 6. Scale drawing of the experimental apparatus. 

or the slenderness ratio 

As shown in table 1, for a wide range of Prandtl numbers the entrance length L, is 
approximately 30 times less than the horizontal length scale 1. From equation (25) 
we learn also that the Rayleigh number must be considerably greater than 1.2 x lo8 
for the present theory to be valid, i.e. for Le/H % 1. 

Finally, keeping in mind that the similarity pattern exists as long as the cavity 
length L exceeds the flow length L,, the Rayleigh number of the flow which just 
reaches the solid end of the cavity is 

Rams= = ( - 7 m l n )  (L/H)*. (26) 

If Ra increases above this threshold value, we expect the similarity pattern (18), (19) 
to still be accurate everywhere except immediately near the end wall, provided 
Le/H = L/H % 1. In  the high Ra limit we envision reservoir fluid filling most of the 
cavity, except for a thin boundary layer lining the vertical end wall. It is possible also 
that in this limit the horizontal (warm) wall will be cooled down closer to the reservoir 
temperature, so that the fluid in the cavity becomes stably stratified. This effect will 
depend upon the heat transfer capability of the wall relative to the fluid (the inverse 
of the Biot modulus). Based on our own experimental observations ( fi 4), we feel that 
the lower wall temperature will be affected by the flow, particularly in applications 
where the horizontal walls are not massive (e.g., the gap formed between two parallel 
horizontal strip fins on a vertical surface). This effect can also be present when 
Le -= L, i.e. for Ra < Ram,, as well as for Le = L with Ra > Rams,. 

4. Experiment 
We tested the preceding theory by conducting the small-scale experiment shown in 

figure 6. The central component of the experimental apparatus is a massive block of 
aluminium with a horizontal space milled into it (dimensions: height H = 6.4 mm, 
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FIQURE 7. Meaeured temperature distribution along the horizontal walls of the cavity. 

length L = 181 mm, width W = 38.4 mm). The rest of the apparatus is a Plexiglas 
water basin with two separate compartments. In figure 6, the compartment on the 
left contains cold water and communicates with the horizontal space milled into the 
aluminium block. The compartment on the right-hand side is filled with warm water; 
its only function is to maintain the block heated to a temperature above that of the 
left compartment. The direct thermal contact between the two reservoirs was inhibited 
by constructing the vertical air layer (5  mm thick) shown in the scale drawing. 

The objective of this experiment was to visualize and photograph the penetration 
length L, of cold water into the warm lateral cavity. For flow visualization we used 
the pH indicator method described by Baker (1966): we filled the left compartment 
with water-thymol blue solution and applied 6V between the electrodes positioned aa 
shown in figure 6. The cathode is the electrode which marks the solution deep blue; 
therefore, we mounted this electrode on the centre-line of the lateral cavity. The 
cathode and anode number 3 are electrically insulated from the aluminium block. 

Figures 7 and 8 show one set of representative measurements. The photograph 
demonstrates that the cold (transparent) fluid protrudes into the lateral cavity t o  a 
distinct depth (L, 2 7.5 cm). In  the cavity, the cold fluid rises, sweeps past the cathode 
and darkens the upper half of the horizontal space. The upper half is darkest towards 
the tip of the flow (x* = 0) ,  because in this region the upflow is weak, i.e., unable to 
wash away the blue shed from the cathode. It is worth noting also that the swarm of 
small hydrogen bubbles collected on the cathode are responsible for striations which 
reproduce very well the streamline pattern of figure 5. In the stagnant zone (z* < 0) 
the cavity appears dark above and below the cathode, because in this region the blue 
generated by the horizontal wire diffuses radially into stagnant fluid. In  the cold 
reservoir (to the left of the lateral cavity) the buoyant flow is driven primarily by heat 
transfer across the air-insulated double wall. The reservoir flow consists of a 
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FIGURE 8. Penetration of free convection into a lateral cavity filled with water (Pr 1( 7, 
H = 6.4 mm, L = 181 mm). The corresponding temperature measurements are reported in 
figure 7. 

boundary layer upllow along the air partition, plus a uniform downflow sufficiently 
far from the partition. The lateral cavity draws fluid from the vertical boundary 
layer. 

The cavity wall temperature was recorded through six thermocouples imbedded in 
the aluminium block, close to the cavity wall. The location of these thermocouples is 
shown in figure 6. Measurements of the type reported in figure 7 demonstrate that the 
vertical air layer performs satisfactorily in insulating the warm metal channel from 
the cold reservoir. However, the cold fluid protruding into the lateral cavity has a 
visible cooling effect on the lower wall. Despite this effect, the walls of the latera 
cavity are roughly 15 "C warmer than the cold reservoir. 

To test the quantitative results predicted by our analysis, we calculated the pre- 
dicted penetration length L, for the experiment shown in figures 7 and 8. Evaluating 
water properties at  30 "C and taking A T  15 "C, we found Ra = 9.6 x 104. Using 
equation (25) and table 1, the predicted length is L, = 9.1 H = 5-8 cm. This length 
agrees well with the photographed length, 7-6 cm. The difference (23 yo) can be 
attributed only in part to the small buffer region effecting the transition from the 
reservoir to the similarity pattern representing the leading segment of the intrusion 
flow. As shown below, this difference is due primarily to an intereating effect induced 
by the temperature variation along the horizontal walls of the cavity (figure 7). 

16 FLU 103 
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FIGWBE 9. Effect of wall temperature variation on the streamfunction and 
temperature profiles ( B  = - 200, Pr + 00). 

The effect of wall temperature variation can be illustrated using the numerical 
scheme described already in 5 3. We aasume a wall temperature of the form 

e = X ~ B ,  (27) 

where B is a negative number accounting for the fact that in an experimental situa- 
tion the temperature of the mouth-end of the wall is pulled towards the reservoir 
temperature. In  the numerical scheme, the temperature boundary condition (22) is 
replaced by 

In figure 9 we show the streamfunction and temperature profles obtained in the c&8e 
B = - 200 (Pr -+ 00). Comparing these reaults with figures 2 and 4 we find that the 
extrema of #(y) and 7(y) become less pronounced aa B increases in absolute value. 
The decreaae in #ma, means that less reservoir fluid is drawn into the cavity; the 
decrease in 17,1nl implies that the penetration length increases aa the walls respond 
thermally to the presence of the reservoir [see equation (25)]. 

In figure 9, the temperature minimum is T~~~ = - 820, therefore, pwameter 

7 = B  tlt ? / = O , l .  (28) 
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B = -200 accounts for a situation in which the wall temperature (at x* = L,) is 
located 'a quarter of the way' between the two extreme temperaturea (closer to 
temperature of the closed end). Such a situation occurred, approximately, in our 
own experiment ( f i ~  7). Consequently, using Tmin = -820 in equation (26), the 
theoretical estimate for penetration length becomes L, g 6.91 cm; this length is only 
8 yo shorter than the experimental value 7.6 cm. 

Finally, it is worth noting that the Rayleigh number achieved in the present water 
experiment, Ra 105, corresponds to an air convection application where H = 10 cm 
if AT = 1 "C, or H = 4.8 cm if AT = 10 "C. Vertical dimensions of this magnitude are 
commonly encountered in the geometry of irregular building walls, particularly in 
designs (interior or exterior) using the individual brick or the brick-to-brick gap aa 
the most elementary design feature. Our own experiment (figure 8) indicates that 
lateral penetration will also be present between adjacent fins on the water side of a 
heat-exchanger surface. 

5. Conclusions and applications 
We presented a theoretical and experimental study of penetration by fhe convection 

into a lateral cavity communicating with a layer fluid reservoir at a. Merent  tem- 
perature. The important parameter of the flow is the Rayleigh number Ba based on 
cavity height H and cavity-reservoir temperature difference. The flow pattern and 
the predicted penetration length agreed well with experimental observations. We 
also found that Ra must exceed 1.2 x 108 if fhe convection is to penetrate laterally 
to a length greater than the cavity height. 

As a first engineering application of the results obtained in this study, we can 
evaluate the net heat exchange between the cavity w a h  and the reservoir fluid. 
Integrating the heat flux over the horizontal walls of the cavity, figure 1, we find 

& = / o - [ - k p )  @I* y-1 + k p )  ay* y-1 ]ax*, (29) 

where Q, W and k are the net heat exchange, cavity width, and fluid thermal conduc- 
tivity, respectively. Omitting the algebra, equation (29) can be rewritten aa 

(30) NU = C&*, 

where the Nusselt number is defined as Nu = &/( Wk AT) .  The numerical coefficient C 
depends on the Prandtl number and is given by 

Table 1 lists the value of this coefficient, showing that in the PP' range 0-7 to 00 the 
Prandtl number has a very weak impact on the Nu-& relation (30). 

We obtain an estimate of the heat transport enhancement associated with lateral 
penetration, by comparing the Nusaelt number, equation (30), with the corresponding 
number for a vertical plate of height H blocking the entrance, 

Nu = 0.671 Ra). (32) 
16-2 
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This result, reproduced here from Gebhart (1971), corresponds to Pr 1. Comparing 
equations (30), (32) we conclude that the heat transfer rate 'with' lateral cavity ex- 
ceeds the rate 'without' cavity by the factor 0.079 Rai. This factor exceeds unity 
when Ra > 2.6 x lo4, i.e. when the penetration slenderness ratio LJH exceeds 4-7. 
It must be kept in mind that the heat transfer enhancement factor 0.079 Rai repre- 
sents a lower bound, for two reasons. First, the vertical boundary layer thickness for 
the wall without cavity is greater than assumed in (32), because it is dictated by the 
wall height which, aa in our experiment, is greater than the height of any cavity. 
Second, the presence of a lateral cavity has the added effect of breaking up the boun- 
dary layer lining the vertical wall. The resulting effect is that the heat transfer rate 
will be increased over that section of vertical wall situated downstream of the lateral 
opening. 

As a final remark, we note that in our presentation we made a special effort to 
consistently describe the penetration phenomenon as occurring in a warm cavity 
facing a cold reservoir. The same flow will occur if the cavity is cold and the reservoir 
is warm. However, to visualize this flow it is necessary to rotate by 180" the pattern 
illustrated in figure 5.  

This research was supported by the National Science Foundation through grant 
ENG-7820957. The experimental apparatus waa constructed by Mi  Karl Rupp. 
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